MiRP2 Forms Potassium Channels in Skeletal Muscle with Kv3.4 and Is Associated with Periodic Paralysis
نویسندگان
چکیده
The subthreshold, voltage-gated potassium channel of skeletal muscle is shown to contain MinK-related peptide 2 (MiRP2) and the pore-forming subunit Kv3.4. MiRP2-Kv3.4 channels differ from Kv3.4 channels in unitary conductance, voltage-dependent activation, recovery from inactivation, steady-state open probability, and block by a peptide toxin. Thus, MiRP2-Kv3.4 channels set resting membrane potential (RMP) and do not produce afterhyperpolarization or cumulative inactivation to limit action potential frequency. A missense mutation is identified in the gene for MiRP2 (KCNE3) in two families with periodic paralysis and found to segregate with the disease. Mutant MiRP2-Kv3.4 complexes exhibit reduced current density and diminished capacity to set RMP. Thus, MiRP2 operates with a classical potassium channel subunit to govern skeletal muscle function and pathophysiology.
منابع مشابه
Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.
MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysi...
متن کاملThe MiRP2-Kv3.4 potassium channel: muscling in on Alzheimer's disease.
In this issue of Molecular Pharmacology (p. 665), Pannacione et al. provide evidence of a role for the voltage-gated potassium channel alpha subunit Kv3.4 and its ancillary subunit MiRP2 in beta-amyloid (Abeta) peptide-mediated neuronal death. The MiRP2-Kv3.4 channel complex-previously found to be important in skeletal myocyte physiology-is now argued to be a molecular correlate of the transien...
متن کاملLack of association of the potassium channel-associated peptide MiRP2-R83H variant with periodic paralysis.
A missense variant (R83H) of the gene (KCNE3) encoding a potassium channel-associated peptide, MinK-related peptide 2 (MiRP2), has been reported in periodic paralysis patients. In the current study, no difference in the frequency of the MiRP2-R83H variant between periodic paralysis patients and healthy individuals was found. Furthermore, there was no segregation of this gene variant with the di...
متن کاملHypokalemic periodic paralysis: an omega pore mutation affects inactivation.
Among the human diseases caused by ion channel mutations hypokalemic periodic paralysis (HypoPP) has thrown up more than its fair share of puzzles. Patients have attacks of skeletal muscle paralysis associated with low serum potassium, and harbor dominant mutations affecting the muscle calcium (CaV1.1) or sodium (NaV1.4) channels respectively. Why do mutations in either channel converge on a co...
متن کاملAccidental intravenous bolus infusion of potassium chloride in a young man with hypokalemic periodic paralysis
Hypokalemic periodic paralysis is anautosomal dominantdisease characterized by muscle weakness or paralysis with a matching fall in blood potassium levels. Paralysis attacks often occur in adolescence and are induced by strenuous exercise followed by rest, high carbohydrateor high sodiummeal content, sudden changes in temperature, and even excitement, noise, flashing lights and cold temperature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 104 شماره
صفحات -
تاریخ انتشار 2001